skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McMillan, Malcolm"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Over recent decades, the Greenland Ice Sheet (GrIS) has lost mass through increased melting and solid ice discharge into the ocean. Surface meltwater features such as supraglacial lakes (SGLs), channels and slush are becoming more abundant as a result of the former and are implicated as a control on the latter when they drain. It is not yet clear, however, how these different surface hydrological features will respond to future climate changes, and it is likely that GrIS surface melting will continue to increase as the Arctic warms. Here, we use Sentinel-2 and Landsat 8 optical satellite imagery to compare the distribution and evolution of meltwater features (SGLs, channels, slush) in the Russell–Leverett glacier catchment, southwest Greenland, in relatively high (2019) and low (2018) melt years. We show that (1) supraglacial meltwater covers a greater area and extends further inland to higher elevations in 2019 than in 2018; (2) slush – generally disregarded in previous Greenland surface hydrology studies – is far more widespread in 2019 than in 2018; (3) the supraglacial channel system is more interconnected in 2019 than in 2018; (4) a greater number and larger total area of SGLs drained in 2019, although draining SGLs were, on average, deeper and more voluminous in 2018; (5) small SGLs (≤0.0495 km2) – typically disregarded in previous studies – form and drain in both melt years, although this behaviour is more prevalent in 2019; and (6) a greater proportion of SGLs refroze in 2018 compared to 2019. This analysis provides new insight into how the ice sheet responds to significant melt events, and how a changing climate may impact meltwater feature characteristics, SGL behaviour and ice dynamics in the future. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability. 
    more » « less